
Grokking Algorithms
Release 0.1

Sri Anumakonda

Dec 14, 2021

CONTENTS

1 Contents 3
1.1 Binary search . 3
1.2 Running time . 4
1.3 Lists + Arrays . 6
1.4 Selection sort . 9
1.5 Recursion . 11
1.6 Divide and Conquer . 13
1.7 Quicksort . 17
1.8 Hash tables . 18
1.9 Graphs + Breadth-first search . 20
1.10 Dijkstra’s Algorithm . 24
1.11 Greedy algorithms . 28
1.12 Dynamic Programming . 31
1.13 k-Nearest Neighbors . 36
1.14 Binary trees . 39
1.15 Inverted indexes . 41
1.16 Fourier transform . 42
1.17 Parallel algorithms . 42
1.18 Bloom filters + HyperLogLog . 43
1.19 SHA algorithms . 43
1.20 Diffie-Hellman key exchange . 43

i

ii

Grokking Algorithms, Release 0.1

I recently read Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People and it really
inspired me to open-source my notes

Quick TLDR; on who I am: I’m a 15yo (at the time of writing this) self-driving car enigneer, one of the youngest in the
world. Am super fascinated by self-driving and how we can create a generalized, end2end model, capable of having
robust preformance fully through Computer Vision. Recently built DataGAN

Now: currently buidling a fully e2e mdoel through Computer Vision. Here’s my repo for code + current progress.
Here’s a tweet showing self-driving in steering (take a look below!)

As featured in: Udacity [blog] [video] + David Silver’s blog!

Note: This project is under active development atm and I’m currently working on importing my notes ASAP.

CONTENTS 1

http://srianumakonda.com
https://twitter.com/srianumakonda/status/1393649008409813003
https://twitter.com/srianumakonda/status/1393649008409813003
https://www.udacity.com/blog/2021/04/the-autonomous-tech-dreams-of-the-14-year-old-sri-anumakonda-student-story.html
https://www.youtube.com/watch?v=5JTAta6ZIb8
https://davidsilver.blog/2021/06/15/sri-builds-a-real-self-driving-car/

Grokking Algorithms, Release 0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

One more thing to note: the digram/italic text will usually be from the textbook itself. I do not take any credit for the
amazling illustrations provided!

1.1 Binary search

1.1.1 The search problem

Important: to find element x in a given list i, should i start from the beginning or start near the middle and split each
step up and half?

This is exactly what binary search is. It’s input is a sort list of elements with the output being the index of where that
element is located.

Simple (stupid) search is essentially when we go through every single index in the list up until you find the desired
element.

If my number was 99, it could take you 99 guesses to get there!

The better technique for counting? Start with 50. If that number’s too low, then you just eliminated 50% of all the
numbers!

Your next range is between 50-100. What’s the middle of that? 75. Too high? Then cut again?

63? No. 57? YES!

You just guessed the number within 7 steps!

Important: “Eliminate half the numbers every time with binary search. For any list of n, binary search will take
log_n steps to run in the worst case, whereas simple search will take n steps.”

3

Grokking Algorithms, Release 0.1

1.1.2 Code

What does that looks like in code?

1 def binary_search(list, item):
2 low = 0
3 high = len(list)-1
4 while low <= high:
5 mid = int((low + high)/2)
6 guess = list[mid]
7 if guess == item:
8 return mid
9 if guess > item:

10 high = mid - 1
11 else:
12 low = mid + 1
13 return None

>>> my_list = [1, 3, 5, 7, 9]
>>> print(binary_search(my_list, 3))
1
>>> print(binary_search(my_list, -1))
None

1.2 Running time

Whenever the maximum amount of guesses is equal to the size of the list, we generally define this to be linear time

Whenever we want to determine how fast an algorithm is, we generally use something known as Big O Notation.

Important: That’s why it’s not enough to know how long an algorithm takes to run—you need to know how the
running time increases as the list size increases.

Big O Notation tells you how fast an algorithm is. For example, let’s say that you have a list of size *n.* The run time
in Big O Notation is *O(n)*.

Notice that Big O Notation doesn’t ask for the speed in seconds. Big O notation lets you compare the number of
operations. It tells you how fast the algorithm grows.

What does that look like for Binary search? O(log_2_n)

Note: Big O Notation establishes a worst-case run time. The worst case is that you iterate through every element until
you find the desired one, the worst case is that you have to apply binary search indefinitely until you find your desired
element.

Here are some common Big O Run Times:

Big O Notation Known as Examples
O(log_n) Log time Binary search
O(n) Linear time Simple search
O(n*log_n) Fast sort algorithm Quicksort
O(n^2) Slow sorting algorithm Selection sort
O(n!) Really slow sorting algorithm Travelling salesperson!

4 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.2. Running time 5

Grokking Algorithms, Release 0.1

1.3 Lists + Arrays

Think of your computer as a giant set of drawers with each drawer having an address.

Every time you want to store an item in memory, you generally will ask the computer for some space (drawers). It then
returns an address where you can store your items.

The 2 ways we store multiple items right now are arrays and lists.

Adding items every single time to an array is very difficult. Think of it like the movies: if you sit with your friends
and a friend shows up [but there are no spots for them], you have to move everyone to a new row. And what happens
if another one shows up? You have to move again!

Adding an item to a computer is very slow. The easiest way we solve this is through “holding seats.” Even if you have
only 3 seats, you can ask the computer for 10 slots, just in case.

The main problem with doing something like this is mainly the fact that you have extra slots that you might’ve asked
for but haven’t used. On the other hand, you might have more than 10 items and would have to move anyway.

We can solve this through the principle of Linked Lists.

Each item stores the address of the next item in the list. A bunch of random random memory addresses are linked
together.

Adding an item to this linked list is quite easy; you just simply stick it anywhere in the memory and store the
address with the previous item. This allows you to never have to move your items

If linked lists are better than arrays (above), what would the purpose of arrays even be?

1.3.1 The problem with lists

The problem with linked lists is that, “*if you’re going to keep jumpig around, linked lists are terrible. Why? If I
wanted to get to the last item in a linked list, I have to go through EVERY SINGLE ITEM because that’s what
gives me the address to get to the next item.”*

Arrays are different. You actually are given the address for every single item in the array.

In this case, you’d use an array when you want to read random elements because you can look up any element in
the array.

Why does it take O(n) time to insert an element into an array?

6 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.3. Lists + Arrays 7

Grokking Algorithms, Release 0.1

1.3.2 Insertion

Generally with lists, insertion is quite easy. You just simply change the address the previous element points to.

But in the case of an array, you need to shift all the elements down.

Verdict: lists are generally better when it comes to inserting elements into the middle.

1.3.3 Deletion

Again, lists are better. You simply just change what the previous element points to while with arrays, everything needs
to be moved up when you delete the element.

8 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.3.4 Arrays vs lists?

Arrays are generally used more because they can allow for random access.

We generally have 2 types of access: random access and sequential [one by one] access. Linked lists can only do
sequential access while random allows you to jump directly to your desired element.

1.4 Selection sort

1.4.1 Music!

Let’s say that I’m sorting music

I go from choosing the most played songs all the way down to the least. I start off with my original list and then append
all of that (in ordered form) to this new list.

As we do this over and over again, every single time, this overall process ends up taking O(n*n) or O(n*2) time

Selection sort is quite neat, but not really that fast. Quicksort is a lot fast, it only takes O(n log n) time!

1.4.2 Code

1 def findSmallest(arr):
2 smallest = arr[0]
3 smallest_index = 0
4 for i in range(1, len(arr)):
5 if arr[i] < smallest:
6 smallest = arr[i]
7 smallest_index = i
8 return smallest_index
9 def selectionSort(arr):

10 newArr = []
11 for i in range(len(arr)):

(continues on next page)

1.4. Selection sort 9

Grokking Algorithms, Release 0.1

10 Chapter 1. Contents

Grokking Algorithms, Release 0.1

(continued from previous page)

12 smallest = findSmallest(arr)
13 newArr.append(arr.pop(smallest))
14 return newArr

>>> print selectionSort([5, 3, 6, 2, 10])
[2, 3, 5, 6, 10]

1.5 Recursion

It’s essentially a function that calls itself:

1 def look_for_key(box):
2 for item in box:
3 if item.is_a_box():
4 look_for_key(item)
5 elif item.is_a_key():
6 print(“found the key!”)

Recursion is generally used when it makes the existing solution a lot clearer and easier to understand.

There is no performance benefit to using recursion! In fact, loops may sometimes be better for performance.

Important: “Loops may achieve a performance gain for your program. Recursion may achieve a performance gain
for your programmer. Choose which is more important in your situation!”

1.5.1 The problem with recursion?

You might get stuck in an infinite loop.

That’s why most recursive functions have a “recursive case” so that function knows when to stop calling itself.

Computers generally use a stack known as the call stack. When you call on a function, your computer allocates a box
of memory for that function call with “sub-boxes” for variable names.

Now, every time you make a function call, your computer saves the values for all the variables in that “box”.

Attention: “When you call a function from another function, the calling function is paused in a partially completed
state.”

The values of that function are stored in memory but they’re instead put on pause.

1.5. Recursion 11

Grokking Algorithms, Release 0.1

12 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.5.2 Code

Recursive functions can also use this call stack as well. A perfect example of this is in factorials.

>>> fact(5)
120

1.5.3 The problems with call stack

What’s the main problem with saving everything on the call stack? It takes up A LOT of memory. When your stick
is too tall, that means your computer is saving information for many function cells.

2 things you can do:

1. Rewrite your code to use a loop isntead

2. Use something known as tail recursion. (only supports some languages)

1.6 Divide and Conquer

Divide and Conquer is generally used in situations where you need to solve a problem that can’t be solved with the
existing algorithms you’ve learned.

It can also be known as a recursive technique used to solve these problems. Think of D&C like this whole new
framework used for solving problems.

Let’s say that we have this farm:

You cut the 1680x640 farm into 2 squares, each of length 640. Now your problem is that you need to split up the
smaller segment (640x400).

If you find the biggest box for that size (640x400), then that’ll be the biggest box which will work for the entire
farm! Notice how you reduced the problem from a 1680x640 farm to a 640x400 farm.

And now, you simply apply the algorithm again and again until you find the perfect case.

So for recap, D&C can be broken down into 2 main steps:

1. Figure out a simple case as the base case

2. Figure out how to reduce your problem and get to the base case.

Important: Remember that D&C isn’t a simple algorithm that you can apply to a problem. Instead, it’s a framework
that you can use to think about a problem.

Here’s array summing in recursion:

This is known as functional programming (Haskell).

1.6. Divide and Conquer 13

Grokking Algorithms, Release 0.1

14 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.6. Divide and Conquer 15

Grokking Algorithms, Release 0.1

16 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.7 Quicksort

Quicksort is generally known as a sorting algorithm. It’s a lot faster than selection sort and is generally used. It uses
a recursive algorithm structure for fast + proper sorting.

Here’s what the process looks like:

1. Pick an element from the array. This is generally known as a pivot.

2. From there, you bin the smaller + larger elements into 2 separate arrays.

a. This overall process is known as partitioning

3. You then run this recursively until you get sorted arrays and then you can simply concatenate everything and
you now have your output.

1.7.1 Running times

The average runtime generally for quicksort is O(n log n) but the worst case is generally O(n^2) time.

Generally remember that when we call something like O(n), it’s generally more of like O(c*n) where c is a constant
multiplied by n but we usually don’t look at that for large numbers.

But sometimes, the constant can make the difference. Quicksort generally has a smaller constant than merge sort.
So if both of them are in O(n log n) time, then quicksort is faster.

Quicksort is also faster in practice mainly because it actually meets the average case substantially more than the worst
case.

Important: The pivot matters. You want to have both arrays be as small as they can. That’s why you’d always
choose the middle [or a random] number.

“In this example, there are O(log n) levels (the technical way to say that is, “The height of the call stack is O(log n)”).
And each level takes O(n) time. The entire algorithm will take O(n) * O(log n) = O(n log n) time. This is the best-case

1.7. Quicksort 17

Grokking Algorithms, Release 0.1

scenario.”

1.7.2 Code

1 def quicksort(array):
2 if len(array) < 2:
3 return array
4 else:
5 pivot = array[0]
6 less = [i for i in array[1:] if i <= pivot]
7 greater = [i for i in array[1:] if i > pivot]
8 return quicksort(less) + [pivot] + quicksort(greater)

>>> print(quicksort([10, 5, 2, 3]))
[2, 3, 5, 10]

1.8 Hash tables

The goal with hash tables mainly is to be able to retrieve information about an item instantaneously. Something
that’s running time is O(1).

Hash functions are essentially when you input a string and are returned a number. Think of it as a way to map from
strings to numbers.

Why does this work?

1. Hash functions consistently map a name to the same index (value)

2. Hash functions map different strings to different indexes.

18 Chapter 1. Contents

Grokking Algorithms, Release 0.1

3. Hash functions know how big your array already is and can only return valid indexes.

Everything, as described above, is known as a hash table.

Other common names include: hash maps, maps, dictionaries, and associative arrays.

Common use cases generally include: lookups, translation, correlation, preventing duplicate entries, and in cache.

Sometimes, what happens is that whenever we bin values together (alphabet words), we end up with 2 or more words
that fall under the same index. This is known as collision. (2 keys have been assigned the same slot)

The simplest solution used right now is to use linked lists. But there’s a problem here; if you’re data is not evenly
distributed i.e. only one node has the majority of lists, you’re going to slow down your table.

What do you do? Create a proper hash function that maps the keys evenly throughout the hash.

1.8.1 Running time

Hash tables run in O(1) time aka constant time (which means instantaneously). Your worst case is O(n) time.

It’s important you don’t hit worst-case scenarios when working with hash tables. To do that, you need to avoid collisions.
To do that, you need: a low load factor and a good hash function.

The load factor is essentially the Number of items in hash table / total number of slots.

Ex. if I had a hash table with length 5 and I’ve filled in 2 slots, then my load factor is: 2/5 = 0.4

When your load factor starts to grow, you need to add more slots to your hash table. This is generally known as resizing.

Quick note: lower load factors lead to fewer collisions + results in increased performance. A rule of thumb mentioned
in the book is to resize whenever the load factor 0.7.

Yes, averaged out, hash tables will still take only O(1) for resizing

1.8. Hash tables 19

Grokking Algorithms, Release 0.1

1.9 Graphs + Breadth-first search

Breadth-first search allows you to find the shortest distance between 2 values.

Important: The problem indicated above is known as a shortest-path problem (how can I get from x to y in the
fastest way?). The algorithm that we use to solve this? This is breadth-first search.

To figure out how we solve the above diagram in the fastest way, there are 2 main steps:

1. Model the problem as a graph

2. Solve the problem using breadth-first search

What even is a graph? A graph is a way to set connections. They’re made up of nodes and edges. A node can be
directly connected to other nodes. These nodes that are connected are known as neighbors.

The 2 questions breadth-first answers?

1. Is there a path from node A to node B?

2. What is the shortest path from node A to node B?

1.9.1 Linear programming

Linear programming can be used to maximize something given the time constraints.

You’re goal could be: *given 2 meters of fabric + cotton, what’s the maximum amount of shirts and pants that I
can make to maximize profit?*

These aren’t direct answers but rather a framework for thinking.

This is quite similar to graph algorithms (actually linear programming is the greater subset for graphs)

20 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.9.2 Queues

The way we’d organize through different hierarchies (levels) of nodes are through queues. They’re similar to stacks
but you can only perform 2 operations: enqueue and dequeue.

It works in FIFO structure; first in, first out. Notice how as the 4 is added, the 1 is automatically removed.

The main concern people face is, How do you express relationships (nodes)? We can do this through hash tables.

For example, with the diagram below:

1 graph = {}
2 graph[“you”] = [“alice”, “bob”, “claire”]
3 graph[“bob”] = [“anuj”, “peggy”]
4 graph[“alice”] = [“peggy”]
5 graph[“claire”] = [“thom”, “jonny”]
6 graph[“anuj”] = []
7 graph[“peggy”] = []
8 graph[“thom”] = []
9 graph[“jonny”] = []

We also have something known as directed graphs. This is essentially when one of the nodes don’t connect to anything
else (Anuj, Peggy, Jonny, Thom).

So to recap, here’s what the overall implementation looks like:

1 # A use case of this for "mango" sellers
2

3 from collections import deque
4 search_queue = deque()
5 search_queue += graph[“you”]
6

7 def person_is_seller(name):
8 return name[-1] == ‘m’
9

10 while search_queue:
11 person = search_queue.popleft()
12 if person_is_seller(person):
13 print person + “ is a mango seller!”

(continues on next page)

1.9. Graphs + Breadth-first search 21

Grokking Algorithms, Release 0.1

22 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.9. Graphs + Breadth-first search 23

Grokking Algorithms, Release 0.1

(continued from previous page)

14 return True
15 else:
16 search_queue += graph[person]
17 return False

1 def search(name):
2 search_queue = deque()
3 search_queue += graph[name]
4 searched = []
5 while search_queue:
6 person = search_queue.popleft()
7 if not person in searched:
8 if person_is_seller(person):
9 print person + “ is a mango seller!”

10 return True
11 else:
12 search_queue += graph[person]
13 searched.append(person)
14 return False

Note that the running time for this algorithm will be atleast O(n) because we search through and follow each edge.

Important: “Breadth-first search takes O(number of people + number of edges), and it’s more commonly written as
O(V+E) (V for number of vertices, E for number of edges).”

1.10 Dijkstra’s Algorithm

4 main steps:

1. Find the “cheapest” node. This is generally the node that you can get to with the shortest cost

2. Update the costs of the neighbours of the node.

3. Repeat this until you’ve done this for every node in the graph.

4. Calculate the final path

“In the last chapter, you used breadth-first search to find the shortest path between two points. Back then, “shortest
path” meant the path with the fewest segments. But in Dijkstra’s algorithm, you assign a number or weight to each
segment. Then Dijkstra’s algorithm finds the path with the smallest total weight.”

Each edge in the graph has a number associated it, **known as weights (**graphs with weights are known as weighted
graphs, unweighted for no weights).

Whenever dealing with unweighted graphs, breadth-first works. For weighted ones, Dijkstra’s algorithm.

Here’s an example of trading a piano book → actual piano:

We work in hierarchies. That means the first section (parent column) would be the the book as that’s the parent for
the poster + rare LP.

What are the trades he needs to make?

We can also use negative signs when we want to show situations where we get something back (ex. I get paid back
$7 for getting some item).

24 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.10. Dijkstra’s Algorithm 25

Grokking Algorithms, Release 0.1

26 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.10. Dijkstra’s Algorithm 27

Grokking Algorithms, Release 0.1

The only concern? Dijkstra’s algorithm doesn’t support negative weights.

What do we do? Use the Bellman-Ford algorithm (outside scope of this guide).

What the algorithm looks like?

1.10.1 In code

1.11 Greedy algorithms

It’s pretty straightforward: at each step you pick the locally optimal solution, and in the end you’re left with the
globally optimal solution.

They’re also super simple to write and usually hit the solution.

28 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.11. Greedy algorithms 29

Grokking Algorithms, Release 0.1

1.11.1 The set-covering problem

“Suppose you’re starting a radio show. You want to reach listeners in all 50 states. You have to decide what stations
to play on to reach all those listeners. It costs money to be on each station, so you’re trying to minimize the number of
stations you play on. You have a list of stations.”

What’s the problem? It takes an extremely long time to calculate every single possible subset. The running time
is O(2^n), it’s WAY TOO SLOW. That would be at least 15 years to figure this out (assuming that you calculate 10
subsets/second)**!**

How can we solve this with greedy algorithms?

1. Pick the station that covers the most states that haven’t been covered yet. It’s OK if the station covers some states
that have been covered already.

2. Repeat until all the states are covered.

What we’re using is something known as an approximation algorithm. Calculating the exact solution takes way too
long.

How do we judge the algorithm?

1. How fast they are

2. How close they are to the optimal solution

What makes greedy a good choice? It has an O(n^2) running time while being able to have high running speeds.

1 states_needed = set(["mt", "wa", "or", "id", "nv", "ut", "ca", "az"])
2 arr = [1, 2, 2, 3, 3, 3]

(continues on next page)

30 Chapter 1. Contents

Grokking Algorithms, Release 0.1

(continued from previous page)

3 stations = {}
4 stations["kone"] = set(["id", "nv", "ut"])
5 stations["ktwo"] = set(["wa", "id", "mt"])
6 stations["kthree"] = set(["or", "nv", "ca"])
7 stations["kfour"] = set(["nv", "ut"])
8 stations["kfive"] = set(["ca", "az"])
9 final_stations = set()

10 while states_needed:
11 best_station = None
12 states_covered = set()
13 for station, states_for_station in stations.items():
14 covered = states_needed & states_for_station # this is a set intersection
15 if len(covered) > len(states_covered): #check whether this station covers␣

→˓more states then the current station, best_station
16 best_station = station #update if condition is met
17 states_covered = covered

>>> states_needed -= states_covered #update because the station has covered those states
>>> final_stations.add(best_station)
>>> print(final_stations)

In this example, the travelling salesman is an NP-complete problem; a computational problems for which no efficient
solution algorithm has been found.

1.12 Dynamic Programming

We talked about in the previous page (greedy algorithms) that sometimes, we can only come up with an approximate
solution. But is it even possible to find + calculate the optimal solution? That’s where dynamic programming comes
in.

Dynamic programming is essentially this method to be able to solve subproblems that build up to solving the big
problem.

1.12. Dynamic Programming 31

Grokking Algorithms, Release 0.1

1.12.1 The knapsack problem

Important: Every dynamic problem starts with some sort of grid, here’s a grid for the knapsack problem:

The question that the grid is trying to answer is if your knapsack had capacity *x* lb, what is the maximum value
that you can put in that bag?

As you fill through the table, this is what you end up becoming at:

Notice that as you go through the rows, the predictions become more refined; you’re iterating over your estimates as
you go through the items.

According to your last best estimate, the best item you can put in there for that 1lb space is the guitar. This is what your
now final grid looks like!

What does that look like as a formula?

The biggest question that pops up in your mind is can the value of a column ever go down?

NO. At every iteration, you’re storing the current maximum estimate. That estimate that you get will never be worse
than what it was before. Same thing with the order of the table, it makes no impact.

What about dealing with fractions of items? That wouldn’t work, dynamic programming allows you to only take
the item or not. Instead, you can solve this with a greedy algorithm! Take as much as you can of one item, when that
runs out, take as much as you can of the next most valuable item, and so on.

Important: “Dynamic programming is useful when you’re trying to optimize something given a constraint. In the
knapsack problem, you had to maximize the value of the goods you stole, constrained by the size of the knapsack.”

General tips for dynamic solutions:

1. Every dynamic-programming solution involves a grid.

32 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.12. Dynamic Programming 33

Grokking Algorithms, Release 0.1

34 Chapter 1. Contents

Grokking Algorithms, Release 0.1

2. The values in the cells are usually what you’re trying to optimize. For the knapsack problem, the values were the
value of the goods.

3. Each cell is a subproblem, so think about how you can divide your problem into subproblems. That will help
you figure out what the axes are.

1.12.2 Longest common subsequence

Suppose Alex accidentally searched for fosh. Which word did he mean: fish or fort?

That isn’t gonna work. Let’s redo the algorithm:

Notice how it works in a diagram “way”. When a new match is found, that row + column is filled with that max value
until another match is found.

1.12.3 Applications of dynamic programming

1. Biologists use the longest common subsequence to find similarities in DNA strands. They can use this to tell
how similar two animals or two diseases are. The longest common subsequence is being used to find a cure for
multiple sclerosis.

2. Have you ever used diff (like git diff)? Diff tells you the differences between two files, and it uses dynamic
programming to do so.

3. We talked about string similarity. Levenshtein distance measures how similar two strings are, and it uses dynamic
programming. Levenshtein distance is used for everything from spell-check to figuring out whether a user is
uploading copyrighted data.

1.12. Dynamic Programming 35

Grokking Algorithms, Release 0.1

1.13 k-Nearest Neighbors

Generally, the main intuition behind KNNs are finding the closest neighbor of a point when graphed out.

On a high level understanding, Netflix’s algorithm also works like this!

Generally, users are plotted out based on similarity so whenever you get recommended movies, Netflix looks at the
people who share similar taste and choose a movie that’ll appeal to you.

The way you figure out the similarity will be through the features you choose to filter by (feature extraction). The way
we find the distances between two [or more] points can be through the Euclidian distance (aka Pythagorean formula):√︀

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

With KNNs, there are 2 main things you can do: classification, and regression. In this case, above we did classification
i.e. classifying genres of similar movies, but regression is super useful as well.

The main question right now is “how do I chose the right features to compare against?” 2 things:

1. Features that directly correlate to the movies you’re trying to recommend

2. Features that don’t have a bias (for example, if you ask the users to only rate comedy movies, that doesn’t tell you
whether they like action movies)

Additionally, this can also fall into Machine Learning algorithms. By selecting accurate + extracting relevant features,
you can determine its nearest neighbors to make an accurate prediction.

36 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.13. k-Nearest Neighbors 37

Grokking Algorithms, Release 0.1

38 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.14 Binary trees

The main intuition behind binary search trees are mainly that whenever you do binary search, you have to add and
then sort the array. That’s inefficient.

For every node, the nodes on the left of it have a lower value while the ones on the right are a lot larger in value.

So, if I wanted to search for Maggie, I’d follow: David → Manning → *Maggie*!

Important: “Searching for an element in a binary search tree takes O(log n) time on average and O(n) time in the
worst case. Searching a sorted array takes O(log n) time in the worst case, so you might think a sorted array is better.
But a binary search tree is a lot faster for insertions and deletions on average.”

Some of the main downsides of binary trees are that you don’t get random access (indexing). The performance of a
tree rely fully on how balanced the tree is. Look at the tree below:

Some trees are also able to balance themselves, like the red-black tree. B-trees are used in storing data in databases.

1.14. Binary trees 39

Grokking Algorithms, Release 0.1

40 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.15 Inverted indexes

Let’s say that we have 3 web pages with this content:

From there, let’s build a hash table from that:

Now let’s say that the user searched for **there.** Now we easily know that we can display pages A and C. We’re
essentially creating a hash that can map words to places where they appear (web pages). This is exactly what
inverted indexes are.

1.15. Inverted indexes 41

Grokking Algorithms, Release 0.1

1.16 Fourier transform

Fourier transform is essentially this algorithm that can basically, given a smoothie, the Fourier transform will tell you
the ingredients in that smoothie. Or given a song, the transform can separate it into individual frequencies.

What’s the use case? With songs, you can boost the individual frequencies you care about (boost bass, hide the
treble).

Can also be used in compressing music. Break down the audio file into its ingredient notes. From there, the transform
will tell you exactly how much each note contributes to the song. Then you delete the irrelevant notes. That’s exactly
how mp3 works!

1.17 Parallel algorithms

The main focus with parallel algorithms is to take advantage of the multiple cores in a computer.

For example, the best time you can get with a sorting algorithm is generally O(n log n) time. You can’t generally sort
an array in O(n) time, unless you use a parallel algorithm!

Parallel algorithms are generally super hard to design + get it working.

Important: “So if you have two cores in your laptop instead of one, that almost never means your algorithm will
magically run twice as fast.”

Why?

1. Parallelism management - if you have to sort an array of 1,000 items, how do you divide this task among the two
cores? Even if you give each core 500 items to sort and then merge them, merging itself takes time.

2. Load distribution amongst processors - if you have 10 tasks to do, you’d probably give each core 5 tasks. What’s
the problem? The first core is given the easy tasks whereas the other core gets all the hard tasks. Now a core
stays idle while it could be used to work.

1.17.1 MapReduce

A special type of parallel algorithm used is MapReduce that’s becoming increasing famous, known as distributed
algorithms. MapReduce is essentially a popular distributed algorithm to manage workloads amongst hundreds of
cores.

The main benefit here is that distributed algorithms allow you to do lots of work while the objective is to speed up the
time it takes to do it.

MapReduce works on 2 main functions: map and reduce:

The map function basically applies a function to each item in an array while distributing the workload on each
machine/core.

The reduce function basically downsizes a list of items into a singular output. An example might be. . .

>>> arr1 = [1, 2, 3, 4, 5]
>>> reduce(lambda x,y: x+y, arr1)
15

42 Chapter 1. Contents

Grokking Algorithms, Release 0.1

1.18 Bloom filters + HyperLogLog

The main problem is that you want to go through a large list to figure out whether an element is in a large set.

The fastest way to do this could be with a has; you have 2 columns: {website_name: checked_or_not}. So, if I wanted
to check if I already saw ` srianumakonda.com<http://srianumakonda.com>`_, then I can just look it up in the hash.

Remember that the average lookup time is O(1).

What’s the problem though: these hash tables are HUGE. It’s a space problem.

Bloom filters are essentially probabilistic data structures. Although false positives might be possible, false negatives
are NOT.

The main benefit here is that Bloom filters take up very little space to operate it at. Tables have to store every single
URL by Google while it’s ok to be wrong in these scenarios.

HyperLogLog is also quite similar. You can approximate the number of unique elements in a set (ex. Amazon wants
to count the # of unique elements that users looked at today) with a fraction of the memory.

1.19 SHA algorithms

SHA (Secure hash algorithms) convert an input to a hash for that string. Note: hash’s are just a short string in this
context where the goal is string→string.

SHAs can be used in situations to check the similarity of files, especially in the case of extremely large files.

Remember that this is only one-way. If someone gets the SHA hash, they can’t convert that back into the original
string.

Important: “SHA is actually a family of algorithms: SHA-0, SHA-1, SHA-2, and SHA-3. As of this writing, SHA-0
and SHA-1 have some weaknesses. If you’re using an SHA algorithm for password hashing, use SHA-2 or SHA-3. The
gold standard for password-hashing functions is currently bcrypt (though nothing is foolproof).”

The other thing to note that is even a single change of the character in a sting results in completely different outputs!
In the case that you a locally-sensitive hash function, you can use something like Simhash.

1.20 Diffie-Hellman key exchange

The DH key exchange solves a problem that’s lurking for quite some time now: How do you encrypt a message so it
can only be read by the person you sent the message to?

The easiest way to solve this would be to come up with a cipher i.e. a=1, b=2, etc. The main problem here is that both
parties need to agree on the cipher.

The benefits?

1. Both parties don’t need to know the cipher.

2. The encrypted messages are extremely hard to decode.

Diffie-Hellman has 2 keys: a public key and a private key. Everyone can have your public key but when you want to
send a message, you can encrypt it using the public key. Only the private key can be used to decrypt it.

1.18. Bloom filters + HyperLogLog 43

http://srianumakonda.com

Grokking Algorithms, Release 0.1

44 Chapter 1. Contents

	Contents
	Binary search
	The search problem
	Code

	Running time
	Lists + Arrays
	The problem with lists
	Insertion
	Deletion
	Arrays vs lists?

	Selection sort
	Music!
	Code

	Recursion
	The problem with recursion?
	Code
	The problems with call stack

	Divide and Conquer
	Quicksort
	Running times
	Code

	Hash tables
	Running time

	Graphs + Breadth-first search
	Linear programming
	Queues

	Dijkstra’s Algorithm
	In code

	Greedy algorithms
	The set-covering problem

	Dynamic Programming
	The knapsack problem
	Longest common subsequence
	Applications of dynamic programming

	k-Nearest Neighbors
	Binary trees
	Inverted indexes
	Fourier transform
	Parallel algorithms
	MapReduce

	Bloom filters + HyperLogLog
	SHA algorithms
	Diffie-Hellman key exchange

